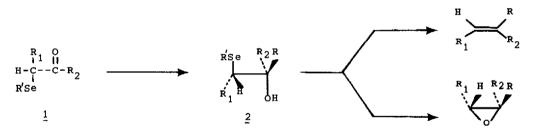
Tetrahedron Letters No. 36, pp 3227 - 3230, 1976. Pergamon Press. Printed in Great Britain.

NEW REGIOSPECIFIC AND STEREOSELECTIVE ROUTE TO B-HYDROXY SELENIDES A (C,C) CONNECTIVE AND STEREOSPECIFIC ROUTE TO OLEFINS AND EPOXIDES

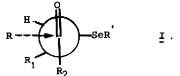

> A.M. Léonard-Coppens and A. Krief⁺ Department of Chemistry, Facultés Universitaires Notre-Dame de la Paix, 61, rue de Bruxelles B-5000 Namur (Belgium).

(Received in UK 12 July 1976; accepted for publication 23 July 1976)

 β -Hydroxy selenides <u>2</u> are used extensively for the synthesis of allyl alcohols^{1,2}, β -halogenohydrins³, as well as for the stereospecific synthesis of olefins⁴ or epoxides⁵. These compounds <u>2</u> have already been synthesized by (C-C) connective routes from α -seleno carbanions^{2,4,5} and a carbonyl compound, or stereospecifically^{1,4a} from an epoxide and alkyl or phenyl selenolate.

This paper reports a new synthon for the synthesis of β -hydroxy selenides which allows both a connective (C-C) bond formation and a stereoselective arrangement of the hydroxyl and selenyl functions by reacting α -seleno carbonyl compounds and organometallics (Scheme 1).

Scheme 1

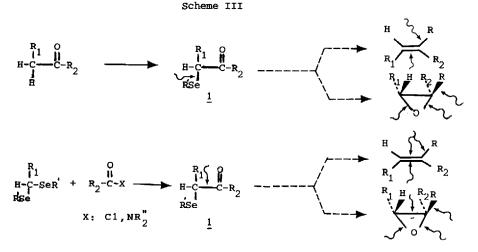

Lithium aluminum hydride⁶ in ether (-15°C) for instance adds the carbonyl group of α -seleno aldehydes or ketones^{7,8} producing the β -hydroxy selenides <u>2</u> in up to 65% yield, moreover in the later case the "threo" derivative <u>2</u> is stereoselectively formed (threo / erythro : 80/20).(See : scheme 1 (R : H), TABLE 1).

 β -Hydroxy selenides are also synthesized in 65% yield by reacting Grignard reagents⁹ in THF or ether with α -seleno aldehydes. In this case, the "erythro" isomer 2 is stereoselectively formed (erythro / three : 94/6). (See : scheme 1 (R : alky1), TABLE 1).

Unfortunately, except in the case of α -seleno acetone, Grignard reagents do not add to α -seleno ketones under standard conditions.

The high selectivity of our reaction can be explained by the Felkin model¹¹ I (Scheme II) in which the separation between the selenyl group and the incoming organometallic is the greatest. It is not surprising then that the more polar selenophenyl group leads to a better stereochemical control (erythro/threo: 94/6) than does the selenomethyl group(erythro/threo: 85/15).Several examples of such a kind of stereoselective induction, on α -heterosubstituted carbonyl compounds have been extensively described in the litterature¹¹⁻¹⁷ and several reports have been devoted to tentatively explain^{11-17,18,19} the experimental results.

Scheme II



The reaction we describe in Scheme I is a parallel to the well known Cornforth synthesis¹⁷ of disubstituted epoxides and olefins. The main advantages of our method for the synthesis of olefins and epoxides are listed below:

1) the inertness of the β -hydroxy selenides under the reaction conditions in which they are formed

Another main interest arises from the *flexibility* of the synthetic routes proposed in Scheme III, due to the powerful synthetic methods of formation of the starting α -seleno carbonyl compounds <u>1</u> compare to those described for their α -chloro analogs, e.g. route B allows the regiospecific synthesis of α -seleno ketones even when R₁ and R₂ are both alkyl groups.

Scheme III propose different methodologies and different building blocks which can be used for the synthesis either of Z or E olefins as well as for Cis or Trans epoxides.

Refers to the bonds which are formed .

|--|

α -seleno carbonyl compound $\underline{1}$				Incoming organometallic	β -hydroxy selenide 2	olefin			epoxide		
R ₁	R ₂	R'	Yield % () ^a	Rb	Yield %	Yield %		E/Z ratio ^d	Yield % Trans/cis ratio		
с _{9^н19}	Ħ	с ₆ ^н 5	62 (A)	Сн3	67	92	(A)	97/3			
с ₅ н ₁₁	н	с ₆ н ₅	67(A)	C6H13	75	36	(A)	-			
с ₅ н ₁₁	H	с ₆ н ₅	67(A)	C10H21	65	76	(A)	94/6			
C2H5	н	с ₆ н ₅	60(A)	с ₃ н ₇	80	85	(B)	97/3			
н	сн ₃	с ₆ н ₅	37(A)	C10 ^H 21	24	90	(B)	-			
10 ^H 21	H	сн ₃	65 (в)	CH ₃	75	60	(A)	-	90		
10 ^H 21	Ħ	СНЗ	65(B)	C ₁₀ H ₂₁	68	67	(A)	85/15	70	85/15	
C6 ^H 13	н	CH ₃	40(B)	C ₁₀ H ₂₁	50	67	(A)	81/19			
с _{5^н11}	н	с ₆ н ₅	62(A)	н	60	-	•	-			
с _{5^н11}	н	с ₆ н ₅	67(A)	н	60	-	•	-			
C2 ^H 5	с ₃ н ₇	с ₆ н ₅	73(A)	н	71	85	(B)	23/77			
с _{9^н19}	C10 ^H 21	с ₆ н ₅	45 (A)	н	60	80	(B)	16/84			

Unless otherwise noted, the yields refer to purified compounds. Spectroscopic data (IR, NMR, Mass spectra) fully agreament the proposed structures.

- a) Refers to the synthetic method used :
 - A. C₆H₅SeCl in ethyl acetate on the corresponding carbonyl compound according to Sharpless procedure⁷.
 - B. Obtained from an α -seleno carbanion and dimethyl formamide according to our previously described method⁸.
- b) R : alkyl, refers to the reaction of the corresponding Grignard reagent on the compound $\underline{1}$. R : H, refers to the reaction of lithium aluminum hydride on the compound $\underline{1}$.
- c) Refers to the synthetic method used :

A. p-toluene sulfonic acid in pentane according to our previously described method^{4a}.

- B. Thionyl chloride and triethyl amine in methylene chloride²⁰.
- d) Stereochemistry of the products as well as the percentage of isomers have been deducted from the corresponding thiono carbonates²¹.

1) K.B. Sharpless and R.F. Lauer. J. Amer. Chem. Soc., 95, 2697 (1973).

- 2a)W. Dumont, P. Bayet and A. Krief. Angew. Chem. Int. Ed. 13, 804 (1974).
- b)D. Seebach and A.K. Beck. Ibid. 13, 805 (1974) and references cited therein.
- 3) M. Sevrin, W. Dumont, L. Hevesi and A. Krief. Tet. Letters in press.
- 4a) J. Rémion, W. Dumont and A. Krief. Tet. Letters, 1385 (1976).
- b)H.J. Reich and F. Chow. J. Chem. Soc., Chem. Comm., 790 (1975).
- 5a)W. Dumont and A. Krief. Angew. Chem. Int. Ed. 14, 350 (1975).
- b)D. Van Ende, W. Dumont and A. Krief. Angew. Chem. Int. Ed. 14, 700 (1975).
- c)D. Van Ende and A. Krief. Tet. Letters, 457 (1975).
- 6a) <u>Typical experiment</u> : α -seleno carbonyl compound (3 mmoles) in ether (5 ml) is slowly added to a precooled (-15°C) suspension of lithium aluminum hydride (2 eq.) in the same solvent (4 ml). After stirring 2 hrs. at this tempereture then 1 more hr. at 25°C, a KOH (50%) solution (3-8 drops) is slowly added. The resulting suspension is diluted in ether, filtered over cellite, washed with brine and dried. The β -hydroxy-selenide is purified by PLC (Preparative thick layer chromatography, SiO₂, ether-pentane : 1-9).
- b)Reductions have also been performed by lithium aluminum hydride in THF or DME, or sodium borohydride in ethanol. In both cases, products resulting from the clivage of the C - Se bond are observed beside the β -hydroxy-selenide.
- 7) K.B. Sharpless, R.F. Lauer and A.Y. Teranishi. J. Amer. Chem. Soc., 95, 6137 (1976).
- 8) J.N. Denis, W. Dumont and A. Krief. Tet. Lett., 453 (1976).
- 9) <u>Typical experiment</u>: α-seleno-aldehyde (3 mmoles) in ether (3 ml) is added to a precooled (-110°C solution of Grignard reagent ¹⁰ (3.5 mmoles) in ether.Stirring is continued at -110°C for 2 hrs. then at -78°C for an additional hr. Acetic acid (1 ml) is added at this temperature. After hydrolysis (10 ml, 0°C), the organic layer is extracted and dried. The purification was done as described in ref. 6a.
- 10)When organolithium compounds are used in place of Grignard reagents, the yield of β -hydroxy-selenide is rather low (8 %) (Stereochemical control E/Z : 90/10). Starting material is also recovered (15%).
- 11) M. Cherest, H. Felkin and N. Prudent. Tet. Lett., 2199 (1968).
- 12)D.J. Cram and D.R. Wilson. J. Amer. Chem. Soc., 85, 1263 (1963).
- 13) M.T. Maurette, A. Gaset, R. Mathis and A. Lattes. Bull. Soc. Chim. Fr., 398 (1975).
- 14)G.J. Karabatsos. J. Amer. Chem. Soc., 89, 1367 (1967).
- 15)H.O. House. Modern Synthetic Reactions, W.A. Benjamin, Chapter 2, p. 54 70, 2nd ed. (1972).
- 16)H. Handel and J.L. Pierre. Tetrahedron, 741 (1976).
- 17) J.W. Cornforth, R.H. Cornforth and K.K. Mathew. J. Chem. Soc., 112 (1959).
- 18) J. Mathieu and J. Weill Raynal. Bull. Soc. Chim. Fr., 1211 (1968).
- 19)Nguyen Trongh Anh and O. Einsenstein. Tet. Lett., 155 (1976).
- 20) J. Rémion and A. Krief. Unpublished results; will be soon submitted to publication.
- 21) A.Krief, L. Hevesi, J.B. Nagy, E.G. Derouane. Submitted to publication.